Welcome to the Computational Developmental Neuroscience Lab (CoDe-Neuro)
Our research focuses on studying the emergence of brain organization during early development and how subtle alterations in key developmental processes lead to neurodevelopmental disorders. To do so, we use multi-modal MRI, graph theory, whole-brain computational models, machine learning and other signal processing tools to characterise structural and functional connectivity. By these means, we aim to develop biomarkers of typical and atypical development allowing us to predict the heterogeneous outcome of children with a higher likelihood of showing neurodevelopmental conditions.
We work alongside the Forensic and Neurodevelopmental Science (FANS) department at the Institute of Psychiatry, Psychology & Neuroscience and the Centre for the Developing Brain (CDB) at the School of Biomedical Engineering & Imaging Sciences and collaborate with the developing Human Connectome and the AIMS-2-TRIALS projects:
We are grateful to the Wellcome Trust for funding a Seed Awards in Science project.
Dynamic functional connectivity in neonates during active and quiet sleep
Functional MRI (fMRI) tells us how different areas of the brain function together. The brain moves through different states, and this dynamic functional connectivity (FC) is key to understanding how the brain works in health, and in neurodevelopmental conditions like autism. However, dynamic FC has only ever been examined in adults. Because how the brain matures in early childhood impacts upon later development; and because neurodevelopmental conditions start early in life; we must look at infants. We aim to identify active and quiet sleep states in neonates using breathing patterns and map dynamic FC during sleep states in more than 600 fMRI datasets already acquired from sleeping newborns. We can then compare dynamic FC from a test sample of babies who are at a higher likelihood of developing conditions, like autism, against this reference. If we are successful with this pilot, future studies will examine i) what alters the maturation of dFC (informing prevention); and ii) whether newborn dynamic FC predicts childhood outcomes (informing intervention).
This project is funded by a Wellcome Trust Seed Award in Science.
PhD projects available as part of the MRC DTP (Theme 2) and the EPSRC CDT