Parsing brain-behavior heterogeneity in very preterm born children using integrated similarity networks

Abstract

Abstract Very preterm birth (VPT; ≤ 32 weeks’ gestation) is associated with altered brain development and cognitive and behavioral difficulties across the lifespan. However, heterogeneity in outcomes among individuals born VPT makes it challenging to identify those most vulnerable to neurodevelopmental sequelae. Here, we aimed to stratify VPT children into distinct behavioral subgroups and explore between-subgroup differences in neonatal brain structure and function. 198 VPT children (98 females) previously enrolled in the Evaluation of Preterm Imaging study (EudraCT 2009-011602-42) underwent Magnetic Resonance Imaging at term-equivalent age and neuropsychological assessments at 4-7 years. Using an integrative clustering approach, we combined neonatal socio-demographic, clinical factors and childhood socio-emotional and executive function outcomes, to identify distinct subgroups of children based on their similarity profiles in a multidimensional space. We characterized resultant subgroups using domain-specific outcomes (temperament, psychopathology, IQ and cognitively stimulating home environment) and explored between-subgroup differences in neonatal brain volumes (voxel-wise Tensor-Based-Morphometry), functional connectivity (voxel-wise degree centrality) and structural connectivity (Tract-Based-Spatial-Statistics). Results showed two-and three-cluster data-driven solutions. The two-cluster solution comprised a ‘resilient’ subgroup (lower psychopathology and higher IQ, executive function and socio-emotional outcomes) and an ‘at-risk’ subgroup (poorer behavioral and cognitive outcomes). The three-cluster solution showed an additional third ‘intermediate’ subgroup displaying behavioral and cognitive outcomes intermediate between the resilient and at-risk subgroups. The resilient subgroup had the most cognitively stimulating home environment and the at-risk subgroup showed the highest neonatal clinical risk, while the intermediate subgroup showed the lowest clinical but the highest socio-demographic risk. Compared to the intermediate subgroup, the resilient subgroup displayed larger neonatal insular and orbitofrontal volumes and stronger orbitofrontal functional connectivity, while the at-risk group showed widespread white matter microstructural alterations. These findings suggest that risk stratification following VPT birth is feasible and could be used translationally to guide personalized interventions aimed at promoting children’s resilience.

Type
Laila Hadaya
Laila Hadaya
PhD Student

I have a Neuroscience (BSc) and Psychiatric Research (MSc) background. I am particularly interested in identifying predictive biomarkers of mental health outcomes and trajectories using neuroimaging and machine learning approaches.

Sunniva Fenn-Moltu
Sunniva Fenn-Moltu
PhD Student

I completed my undergraduate degree in Neuroscience at the University of Glasgow, before joining the MRC Doctoral Training Partnership in Biomedical Sciences at King’s College London. My PhD focuses on functional brain network topology and dynamics in typical and atypical development.

Related